49 research outputs found

    An Evaluation of One-Sided and Two-Sided Communication Paradigms on Relaxed-Ordering Interconnect

    Full text link
    The Cray Gemini interconnect hardware provides multiple transfer mechanisms and out-of-order message delivery to improve communication throughput. In this paper we quantify the performance of one-sided and two-sided communication paradigms with respect to: 1) the optimal available hardware transfer mechanism, 2) message ordering constraints, 3) per node and per core message concurrency. In addition to using Cray native communication APIs, we use UPC and MPI micro-benchmarks to capture one- and two-sided semantics respectively. Our results indicate that relaxing the message delivery order can improve performance up to 4.6x when compared with strict ordering. When hardware allows it, high-level one-sided programming models can already take advantage of message reordering. Enforcing the ordering semantics of two-sided communication comes with a performance penalty. Furthermore, we argue that exposing out-of-order delivery at the application level is required for the next-generation programming models. Any ordering constraints in the language specifications reduce communication performance for small messages and increase the number of active cores required for peak throughput. © 2014 IEEE

    UPC++: A high-performance communication framework for asynchronous computation

    Get PDF
    UPC++ is a C++ library that supports high-performance computation via an asynchronous communication framework. This paper describes a new incarnation that differs substantially from its predecessor, and we discuss the reasons for our design decisions. We present new design features, including future-based asynchrony management, distributed objects, and generalized Remote Procedure Call (RPC). We show microbenchmark performance results demonstrating that one-sided Remote Memory Access (RMA) in UPC++ is competitive with MPI-3 RMA; on a Cray XC40 UPC++ delivers up to a 25% improvement in the latency of blocking RMA put, and up to a 33% bandwidth improvement in an RMA throughput test. We showcase the benefits of UPC++ with irregular applications through a pair of application motifs, a distributed hash table and a sparse solver component. Our distributed hash table in UPC++ delivers near-linear weak scaling up to 34816 cores of a Cray XC40. Our UPC++ implementation of the sparse solver component shows robust strong scaling up to 2048 cores, where it outperforms variants communicating using MPI by up to 3.1x. UPC++ encourages the use of aggressive asynchrony in low-overhead RMA and RPC, improving programmer productivity and delivering high performance in irregular applications

    Modeling the Control of Trypanosomiasis Using Trypanocides or Insecticide-Treated Livestock

    Get PDF
    In Uganda, cattle are an important reservoir for Trypanosoma brucei rhodesiense, the causative agent of Rhodesian sleeping sickness (human African trypanosomiasis), transmitted by tsetse flies Glossina fuscipes fuscipes, which feed on cattle, humans, and wild vertebrates, particularly monitor lizards. Trypanosomiasis can be controlled by treating livestock with trypanocides or insecticide – killing parasites or vectors, respectively. Mathematical modeling of trypanosomiasis was used to compare the impact of drug- and insecticide-based interventions on R0 with varying densities of cattle, humans and wild hosts. Intervention impact changes with the number of cattle treated and the proportion of bloodmeals tsetse take from cattle. R0 was always reduced more by treating cattle with insecticide rather than trypanocides. In the absence of wild hosts, the model suggests that control of sleeping sickness (R0<1) could be achieved by treating ∼65% of cattle with trypanocides or ∼20% with insecticide. Required coverage increases as wild mammals provide increasing proportion of tsetse bloodmeals: if 60% of non-human bloodmeals are from wild hosts then all cattle have to be treated with insecticide. Conversely, it is reduced if lizards, which do not harbor trypanosomes, are important hosts and/or if insecticides are used at a scale where tsetse numbers decline

    Rewriting System for Profile-Guided Data Layout Transformations on Binaries

    Get PDF
    International audienceCareful data layout design is crucial for achieving high performance. However exploring data layouts is time-consuming and error-prone, and assessing the impact of a layout transformation on performance is difficult without performing it. We propose to guide application programmers through data layout restructuring by providing a comprehensive multidimensional description of the initial layout, built from trace analysis, and then by giving a performance evaluation of the transformations tested and an expression of each transformed layout. The programmer can limit the exploration to layouts matching some patterns. We apply this method to two multithreaded applications. The performance prediction of multiple transformations matches within 5% the performance of hand-transformed layout code

    Prospects for the development of odour baits to control the tsetse flies Glossina tachinoides and G. palpalis s.l.

    Get PDF
    Field studies were done of the responses of Glossina palpalis palpalis in Côte d'Ivoire, and G. p. gambiensis and G. tachinoides in Burkina Faso, to odours from humans, cattle and pigs. Responses were measured either by baiting (1.) biconical traps or (2.) electrocuting black targets with natural host odours. The catch of G. tachinoides from traps was significantly enhanced (~5×) by odour from cattle but not humans. In contrast, catches from electric targets showed inconsistent results. For G. p. gambiensis both human and cattle odour increased (>2×) the trap catch significantly but not the catch from electric targets. For G. p. palpalis, odours from pigs and humans increased (~5×) the numbers of tsetse attracted to the vicinity of the odour source but had little effect on landing or trap-entry. For G. tachinoides a blend of POCA (P = 3-n-propylphenol; O = 1-octen-3-ol; C = 4-methylphenol; A = acetone) alone or synthetic cattle odour (acetone, 1-octen-3-ol, 4-methylphenol and 3-n-propylphenol with carbon dioxide) consistently caught more tsetse than natural cattle odour. For G. p. gambiensis, POCA consistently increased catches from both traps and targets. For G. p. palpalis, doses of carbon dioxide similar to those produced by a host resulted in similar increases in attraction. Baiting traps with super-normal (~500 mg/h) doses of acetone also consistently produced significant but slight (~1.6×) increases in catches of male flies. The results suggest that odour-baited traps and insecticide-treated targets could assist the AU-Pan African Tsetse and Trypanosomiasis Eradication Campaign (PATTEC) in its current efforts to monitor and control Palpalis group tsetse in West Africa. For all three species, only ~50% of the flies attracted to the vicinity of the trap were actually caught by it, suggesting that better traps might be developed by an analysis of the visual responses and identification of any semiochemicals involved in short-range interaction

    Explaining the host-finding behavior of blood-sucking insects: computerized simulation of the effects of habitat geometry on tsetse fly movement

    Get PDF
    BACKGROUND: Male and female tsetse flies feed exclusively on vertebrate blood. While doing so they can transmit the diseases of sleeping sickness in humans and nagana in domestic stock. Knowledge of the host-orientated behavior of tsetse is important in designing bait methods of sampling and controlling the flies, and in understanding the epidemiology of the diseases. For this we must explain several puzzling distinctions in the behavior of the different sexes and species of tsetse. For example, why is it that the species occupying savannahs, unlike those of riverine habitats, appear strongly responsive to odor, rely mainly on large hosts, are repelled by humans, and are often shy of alighting on baits? METHODOLOGY/PRINCIPLE FINDINGS: A deterministic model that simulated fly mobility and host-finding success suggested that the behavioral distinctions between riverine, savannah and forest tsetse are due largely to habitat size and shape, and the extent to which dense bushes limit occupiable space within the habitats. These factors seemed effective primarily because they affect the daily displacement of tsetse, reducing it by up to ,70%. Sex differences in behavior are explicable by females being larger and more mobile than males. CONCLUSION/SIGNIFICANCE: Habitat geometry and fly size provide a framework that can unify much of the behavior of all sexes and species of tsetse everywhere. The general expectation is that relatively immobile insects in restricted habitats tend to be less responsive to host odors and more catholic in their diet. This has profound implications for the optimization of bait technology for tsetse, mosquitoes, black flies and tabanids, and for the epidemiology of the diseases they transmit

    Cost analysis of options for management of African Animal Trypanosomiasis using interventions targeted at cattle in Tororo District; south-eastern Uganda

    Get PDF
    BACKGROUND: Tsetse-transmitted African trypanosomes cause both nagana (African animal Trypanosomiasis-AAT) and sleeping sickness (human African Trypanosomiasis - HAT) across Sub-Saharan Africa. Vector control and chemotherapy are the contemporary methods of tsetse and trypanosomiasis control in this region. In most African countries, including Uganda, veterinary services have been decentralised and privatised. As a result, livestock keepers meet the costs of most of these services. To be sustainable, AAT control programs need to tailor tsetse control to the inelastic budgets of resource-poor small scale farmers. To guide the process of tsetse and AAT control toolkit selection, that now, more than ever before, needs to optimise resources, the costs of different tsetse and trypanosomiasis control options need to be determined. METHODS: A detailed costing of the restricted application protocol (RAP) for African trypanosomiasis control in Tororo District was undertaken between June 2012 and December 2013. A full cost calculation approach was used; including all overheads, delivery costs, depreciation and netting out transfer payments to calculate the economic (societal) cost of the intervention. Calculations were undertaken in Microsoft Excel™ without incorporating probabilistic elements. RESULTS: The cost of delivering RAP to the project was US6.89peranimalperyearwhilethatof4dosesofacurativetrypanocideperanimalperyearwasUS 6.89 per animal per year while that of 4 doses of a curative trypanocide per animal per year was US 5.69. However, effective tsetse control does not require the application of RAP to all animals. Protecting cattle from trypanosome infections by spraying 25 %, 50 % or 75 % of all cattle in a village costs US1.72,3.45and5.17peranimalperyearrespectively.Alternatively,ayearofasingledoseofcurativeorprophylactictrypanocidetreatmentplus50  1.72, 3.45 and 5.17 per animal per year respectively. Alternatively, a year of a single dose of curative or prophylactic trypanocide treatment plus 50 % RAP would cost US 4.87 and US$ 5.23 per animal per year. Pyrethroid insecticides and trypanocides cost 22.4 and 39.1 % of the cost of RAP and chemotherapy respectively. CONCLUSIONS: Cost analyses of low cost tsetse control options should include full delivery costs since they constitute 77.6 % of all project costs. The relatively low cost of RAP for AAT control and its collateral impact on tick control make it an attractive option for livestock management by smallholder livestock keepers

    GASNet-EX performance improvements due to specialization for the cray aries network

    No full text
    GASNet-EX is a portable, open-source, high-performance communication library designed to efficiently support the networking requirements of PGAS runtime systems and other alternative models on future exascale machines. This paper reports on the improvements in performance observed on Cray XC-series systems due to enhancements made to the GASNet-EX software. These enhancements, known as 'specializations', primarily consist of replacing network-independent implementations of several recently added features with implementations tailored to the Cray Aries network. Performance gains from specialization include (1) Negotiated-Payload Active Messages improve bandwidth of a ping-pong test by up to 14%, (2) Immediate Operations reduce running time of a synthetic benchmark by up to 93%, (3) non-bulk RMA Put bandwidth is increased by up to 32%, (4) Remote Atomic performance is 70% faster than the reference on a point-to-point test and allows a hot-spot test to scale robustly, and (5) non-contiguous RMA interfaces see up to 8.6x speedups for an intra-node benchmark and 26% for inter-node. These improvements are all available in GASNet-EX version 2018.3.0 and later
    corecore